2.3: Interpretations of the Derivative

For a function f, we have seen the derivative f^{\prime} represented as the instantaneous rate of change. That is to say that $f^{\prime}(x)$ is the limit as we take the average rate of change in smaller and smaller intervals containing x. For this reason you can think of

$$
f^{\prime}(x) \approx \frac{\Delta y}{\Delta x}
$$

However, there is another notation for derivatives, introduced by the German mathematician Leibniz. When $y=f(x)$ he writes

$$
f^{\prime}(x)=\frac{d y}{d x} .
$$

With this notation it is easy to see that the derivative is represented as

$$
\frac{\text { Difference in } y \text {-values }}{\text { Difference in } x \text {-values }} \text {. }
$$

In order to evaluate the Leibniz notation at a point, such as $f^{\prime}(2)=4$ say the derivative of f at 2 is 4 , we write

$$
\left.\frac{d y}{d x} \right\rvert\,=4 .
$$

Using Units to Interpret the Derivative

Example 1: The cost C (in dollars) of building a house A square feet in area is given by the function $C=f(A)$. What are the units and the practical interpretation of the function $f^{\prime}(A)$?

In general, the units for the derivative function are the same as the units for average rate of change.

1. The units of the derivative of a function are the units of the dependent variable divided by the units of the independent variable. In other words, the units of $d A / d B$ are the units of A divided by the units of B.
2. If the derivative of a function is not changing rapidly near a point, then the derivative is approximately equal to the change in the function when the independent variable increases by 1 unit.

Example 2: The cost of extracting T tons of ore from a copper mine is $C=f(T)$ dollars. What does it mean to say $f^{\prime}(2000)=100$?

Example 3: If $q=f(p)$ gives the number of thousands of tons of zinc produced when the price is p dollars per ton, then what are the units and the meaning of

$$
\left.\frac{d q}{d p} \right\rvert\,=0.2 ?
$$

Example 4: The time, L (in hours), that a drug stays in a person's system is a function of the quantity administered, q, in mg , so $L=f(q)$.
(a) Interpret the statement $f(10)=6$. Give units for the numbers 10 and 6 .
(b) Write the derivative of the function $L=f(q)$ in Leibniz notation. If $f^{\prime}(10)=0.5$, what are the units of 0.5 ?
(c) Interpret the statement $f^{\prime}(10)=0.5$ in terms of dose and duration.

Example 5: If the velocity of a body at time t seconds is measured in meters/sec, what are the units of the acceleration of the body?

Tangent Line Approximation: Local Linearity

Recall that the derivative tells us how fast the value of a function is changing. So if a function is relatively tame near a point we can use the derivative to estimate values of the function at nearby points.

Example 6: Suppose that $f(t)$ is a function with $f(25)=3.6$ and $f^{\prime}(25)=$ -0.2 . Estimate $f(26)$ and $f(30)$.

Definition: If $y=f(x)$ and Δx is near 0 , then $\Delta y \approx f^{\prime}(x) \Delta x$. For x near a, we have $\Delta y=f(x)-f(a)$, so

$$
f(x) \approx f(a)+f^{\prime}(a) \Delta x
$$

is called the tangent line approximation of $f(x)$.
Example 7: For a function $f(x)$, we know that $f(20)=68$ and $f^{\prime}(20)=-3$. Estimate $f(21), f(19)$ and $f(25)$.

Recall that for relative change of a function we look at the rate of change as a fraction of the original value of the function. We can define relative change analagously with the derivative function.
Definition: The relative rate of change of $y=f(t)$ at $t=a$ is defined to be

$$
\text { Relative rate of change of } y \text { at } a=\frac{d y / d t}{y}=\frac{f^{\prime}(a)}{f(a)} \text {. }
$$

Example 8: Annual world soybean production, $W=f(t)$, in million tons, is a function of t years since the start of 2000 .
(a) Interpret the statements $f(8)=253$ and $f^{\prime}(8)=17$ in terms of soybean production.
(b) Calculate the relative rate of change of W at $t=8$; interpret it in terms of soybean production.

Example 9: Solar photovoltaic (PV) cells are the world's fastest growing energy source. At time t in years since 2005, peak PV energy-generating capacity worldwide was approximately $E=4.6 e^{0.43 t}$ gigawatts. Estimate the relative rate of change of PV energy-generating capacity in 2015 using this model and
(a) $\Delta t=1$
(b) $\Delta t=0.1$
(c) $\Delta t=0.01$

Examply 10: In April 2009, the US Bureau of Economic Analysis announced that the US gross domestic product (GDP) was decreasing at an annual rate of 6.1%. The GDP of the US at that time was 13.84 trillion dollars. Calculate the annual rate of change of the US GDP in April 2009.

